发作品签到
专业版

cw3电压电流表

工程标签

49
0
0
0

简介

感谢嘉立创和芯源半导体组织的这次活动,让我有了学习的机会。第一次做项目,好多都是从头开始学,有了这一次的经历,发现了好多问题,只有打样完成,组装起来才发现面板尺寸不对,外壳也有点小。

简介:感谢嘉立创和芯源半导体组织的这次活动,让我有了学习的机会。第一次做项目,好多都是从头开始学,有了这一次的经历,发现了好多问题,只有打样完成,组装起来才发现面板尺寸不对,外壳也有点小。
电压电流表训练营【立创开发板&CW32】

开源协议

GPL 3.0

创建时间:2024-07-21 05:41:25更新时间:2024-08-21 09:55:49

描述

IMG_20240821_171531

IMG_20240821_161606_edit_186030889177835

IMG_20240821_162206_edit_186417778848833_compressed

IMG_20240821_161519_edit_185990480829777

硬件设计

1 供电电路

image-20240821164838962

LDO(低压差线性稳压器)选型

本项目使用LDO作为电源,考虑到实际的电压表头产品多在24V或36V供电的工业场景中应用,本项目选择了最高输入电压高达40V的SE8550K2作为电源。本项目没有使用DCDC降压电路来应对大压差的主要原因为避免设计过程中引入DCDC的纹波干扰,次要原因为降低项目成本。

设计DC插头时应注意DC插座的内径。常见有DC2.1、DC2.5,确定好电源接头与DC座是否合适。

2 ADC采样电路

image-20240821165316046

cw32在本项目中的优势

更好的ADC:12位高速ADC 可达到±1.0LSB INL 11.3ENOB 多种Vref参考电压... ...(STM32仅支持VDD=Vref)

CW32的ADC主要特性

image.png

3、电压采样电路

本项目设计分压电阻为220K+10K,因此分压比例为22:1(ADC_IN11)

分压电阻选型

  1. 设计测量电压的最大值,出于安全考虑,本项目为30V(实际最大可显示99.9V或100V);
  2. ADC参考电压,本项目中为1.5V,该参考电压可以通过程序进行配置;
  3. 功耗,为了降低采样电路的功耗,通常根据经验值将低侧电阻(R7)选择为10K;

随后便可以通过以上参数计算出分压电阻的高侧电阻:

  1. 计算所需的分压比例:即ADC参考电压:设计输入电压,通过已知参数可以计算出1.5V/30V=0.05
  2. 计算高侧电阻:即低侧电阻/分压比例,通过已知参数可以计算出10K/0.05=200K
  3. 选择标准电阻:选择一颗略高于计算值的电阻,计算值为200K,通常我们选择E24系列电阻,因此本项目中选择大于200K且最接近的220K。

4 电流采样电路

image-20240821165810878

本项目设计的采样电流为3A,选择的采样电阻(R0)为100mΩ
采样选型主要需要参考以下几个方面:

预设计测量电流的最大值,本项目中为3A
检流电阻带来的压差,一般不建议超过0.5V
检流电阻的功耗,应当根据该参数选择合适的封装,本项目考虑到大电流时的功耗(温度)问题,选择了1W封装的金属绕线电阻
检流电阻上电压的放大倍数:本项目中没有使用运放搭建放大电路,因此倍率为1
随后便可以通过以上参数计算出检流的阻值选择:

由于本项目没有使用放大电路,因此需要选择更大的采样电阻获得更高的被测电压以便于进行测量
考虑到更大的电阻会带来更大的压差、更高的功耗,因此也不能无限制的选择更大的电阻
本项目选用了1W封装的电阻,对应的温升功率为1W
综合以上数据,本项目选择了100mΩ的检流电阻,根据公式可以计算出3A*100mΩ=300mV,900mW

5、数码管显示

image-20240821165937932

image.png

数码管的驱动原理主要涉及到通过控制数码管的各个灯段的开关状态来显示数字、字母或符号。以下是详细的驱动原理说明:

数码管的基本构成:
数码管通常由七段或八段LED(本项目为8段)组成,每个段代表数码管的一部分,可以显示数字0-9、字母A-F等字符。
数码管有共阴极和共阳极两种类型,它们的区别在于LED的公共端COM(即连接所有LED的一端)是连接到电源的负极还是正极。
驱动方式:
段选:通过控制数码管的各个灯段的开关状态来显示所需的数字或字符。每个灯段对应一个控制信号,当控制信号开启时,该段会显示点亮,反之则灭掉。(a、b、c、d、e、f、g、dp)
位选:通过控制数码管的位线来选择需要显示的数码管。位线控制是将需要显示的数码管的位线设置为高电平,其他数码管的位线设置为低电平。通过不断地切换位线的状态,可以实现多个数码管之间的显示切换。
驱动电路:
数码管驱动电路可以通过硬件电路实现,如使用数字信号处理器(DSP)、微控制器(MCU)或移位寄存器等集成电路来生成适合LED的控制信号。
这些控制信号可以是脉冲宽度调制(PWM)信号、串行数据信号等形式。通过控制这些信号的频率、宽度和幅度,可以实现数码管的亮暗控制,从而显示出所需的数字或字母。
软件控制:
除了硬件驱动电路,还可以通过软件控制来实现数码管的驱动。通过编程生成适合数码管的控制信号,可以实现更加灵活和复杂的显示效果,如数字的滚动显示、交替显示等。
共阴极与共阳极数码管的驱动:
对于共阴极数码管,共阴极引脚连接到电源的负极,控制引脚连接到控制芯片的输出引脚。当需要显示某个数字时,控制芯片会输出相应的编码信号到控制引脚,使得对应的LED段点亮。
对于共阳极数码管,工作原理与共阴极数码管相似,只是共阳极引脚连接到电源的正极,控制引脚连接到控制芯片的输出引脚。
编码显示:
为了使数码管显示出相应的数字或字符,必须使段数据口输出相应的字形编码。例如,要显示数字“0”,共阳极数码管的字型编码为11000000B(即C0H),而共阴极数码管的字型编码为00111111B(即3FH),具体编码以实际数码管为准。
动态显示与静态显示:
数码管可以采用静态显示或动态显示方式。静态显示时,每个数码管的8个字段分别与一个8位I/O口地址相连,I/O口只要有段码输出,相应字符即显示出来并保持不变。动态显示则是一位一位地轮流点亮各位数码管,通过快速切换实现人眼视觉上的同时显示。
总结来说,数码管的驱动原理是通过控制数码管的各个灯段的开关状态来显示数字、字母或符号,并通过段选和位选的方式实现多个数码管之间的显示切换。同时,可以通过硬件电路或软件控制来实现数码管的驱动,并根据需要选择共阴极或共阳极数码管进行驱动。

本项目实际采用动态扫描显示驱动数码管。

推算一下数码管所需电流

本项目实际采用动态扫描显示驱动数码管,因而在同一时刻,最多仅有8个段的数码管(或理解为LED)被点亮,或者说有某一位被点亮。根据设计,所需驱动电流即为IO口高电平电压3.3V÷300Ω≈11mA。

此时应注意选型的MCU是否有足够的拉电流/灌电流的能力。

img

image.png6 用于电压测量校准的TL431电路设计

image-20240821170429011

本项目额外增加了一个TL431电路用来提供一个2.5V的基准电压,可用于给芯片一个用于校准AD的外部电压基准,从产品设计角度来讲,由于CW32本身的ADC性能优势,可以不需要此电路。在开发板上设计此电路,用于学习相关应用原理。

TL431算是一个比较“老”的器件了,很经典,应用很广泛,现在在很多电子产品中仍然有其身影。

可能很多新手初次接触此器件,我们简单的讲讲此产品的原理,方便大家更好的应用TL431。

TI从名称上,将其定义为:精密可编程基准,我们在参考文献的第一页上,可以重点关注几个特性。

精密:精密,说明其输出电压非常准。我使用的为±0.5%精度的TL431,在室温下,板上实测2.495V。相较于常见的稳压二极管,精度天差地别。在应用电路图中,TL431内部以一个稳压管的符号做示意。

可调输出电压:可调输出电压在Vref到36V之间,我们在项目中使用输出Vref电压。Vref电压约为2.5V。所以我们在描述中用2.5V,实际是约等于的。

灌电流能力:也就是输出电压的引脚可以提供多少电流,这与在应用电路中的电阻(R13)的阻值有很大关系。不能低于1mA。如果没有灌电流的需求,则不要将电流设计过大,造成不必要的功耗影响。
IMG_20240821_172347

设计图

未生成预览图,请在编辑器重新保存一次

BOM

暂无BOM

附件

序号文件名称下载次数
1
带有标定功能的数字电压电流表.zip
4
2
Panel_Panel_1_2024-08-21.epanm
0
3
cw32电压电流表外壳.zip
0
4
测试.jpg
0
5
标定功能.mp4
0
克隆工程
添加到专辑
0
0
分享
侵权投诉

评论

全部评论(1)
按时间排序|按热度排序
粉丝0|获赞0
相关工程
暂无相关工程

底部导航