
基于CW32F030的电压电流表
简介
利用CW32F030单片机开发一款电压电流表,实时显示电压与电流值,支持数据校准,可应用于多种电气测量场景。
简介:利用CW32F030单片机开发一款电压电流表,实时显示电压与电流值,支持数据校准,可应用于多种电气测量场景。开源协议
:GPL 3.0
描述
基于CW32F030的电压电流表,实现电压测量和电流的测量功能,并能够对电压校准。本次硬件设计,使用嘉立创EDA专业版设计。
设计背景
ADC(Analog-to-Digital Converter,即模拟-数字转换器)是电子系统中不可或缺的关键组件,它将连续的模拟信号转换为数字信号,为数字处理和分析提供了可能。ADC在信号转换、测量与数据采集、控制系统输入以及通信与信号处理等方面发挥着重要作用,其广泛的应用促进了各行业电子设备的智能化和精确控制,是推动现代科技进步的关键因素之一。
数字电压电流表结合了ADC的技术与电路测量原理,能够精确地将模拟的电压电流信号转换为数字显示,便于电子工程师直观读取和分析。这种设备不仅提高了电路测量的准确性和效率,还帮助工程师更好地理解电路行为,是进行电子设计和故障排查的得力助手,对电子工程师的工作具有重要的辅助作用。在产品应用上,数字电压电流表确保了电路设计的准确性和安全性,同时也为产品的质量控制和后期维护提供了有力支持。
本项目设计分压电阻为220K+10K,因此分压比例为22:1(ADC_IN11)
分压电阻选型
- 设计测量电压的最大值,出于安全考虑,本项目为30V(实际最大可显示99.9V或100V);
- ADC参考电压,本项目中为1.5V,该参考电压可以通过程序进行配置;
- 功耗,为了降低采样电路的功耗,通常根据经验值将低侧电阻(R7)选择为10K;
随后便可以通过以上参数计算出分压电阻的高侧电阻:
- 计算所需的分压比例:即ADC参考电压:设计输入电压,通过已知参数可以计算出1.5V/30V=0.05
- 计算高侧电阻:即低侧电阻/分压比例,通过已知参数可以计算出10K/0.05=200K
- 选择标准电阻:选择一颗略高于计算值的电阻,计算值为200K,通常我们选择E24系列电阻,因此本项目中选择大于200K且最接近的220K。
如果在实际使用中,需要测量的电压低于2/3的模块设计电压,即66V,则可以根据实际情况更换分压电阻并修改程序从而提升测量的精度,下面将进行案例说明:
- 假设被测电压不高于24V,其他参数不变
- 通过计算可以得到1.5V/24V=0.0625,10K/0.0625=160K,160K为标准E24电阻可以直接选用,或适当留出冗余量选择更高阻值的180K
如果在实际使用中,需要测量的电压若高于模块99V的设计电压,可以选择更换分压电阻或通过修改基准电压来实现更大量程的电压测量范围,下面将进行案例说明:
- 假设被测电压为160V,选择提升电压基准的方案扩大量程
- 已知选用电阻的分压比例为0.0145,通过公式反推,我们可以计算出
160V*0.0145=2.32V
,因此我们可以选择2.5V的电压基准来实现量程的提升(扩大量程将会降低精度)
考虑到被测电源可能存在波动,在电路设计时,在低侧分压电阻上并联了10nF的滤波电容提高测量稳定性。
头一次做硬件,所以这个设计的PCB布局不是很合理,使用起来感觉不是很方便。
完成品照片如下:
固件和演示视频在附件下方。
设计图

BOM


评论